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Abstract We consider dynamics of a Sun-Jupiter-Asteroid system, and, under
some simplifying assumptions, show the existence of instabilities in the motions of
an asteroid. In particular, we show that an asteroid whose initial orbit is far from
that of the orbit of Mars can be gradually perturbed into one that crosses Mars’
orbit.

Properly formulated, the motions of the asteroid can be described as a Hamil-
tonian system with two degrees of freedom, with the dynamics restricted to a
“large” open region of the phase space reduced to an exact area preserving map.
Instabilities arise in regions where the map has no invariant curves. The method
of MacKay and Percival is used to explicitly rule out the existence of these curves,
and results of Mather abstractly guarantee the existence of diffusing orbits. We
emphasize that finding such diffusing orbits numerically is quite difficult, and is
outside the scope of this paper.

Keywords Hamiltonian Systems · Restricted Problems · Instabilities · Asteroid
Belt

1 Introduction

We consider the restricted circular planar three body problem (RCP3BP) with
two massive primaries, which we call the Sun and Jupiter, that perform uniform
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circular motion about their center of mass. The system is normalized to mass one
so the Sun has mass 1 − µ and Jupiter mass µ. We further normalize so that
Jupiter rotates with unit speed, resulting in a period of 2π for the primaries. The
distance from the Sun to Jupiter is constant and also normalized to one. Our
goal is to understand the behavior of the massless asteroid, whose position in
polar coordinates is denoted by (r, ψ). It is convenient to consider the system in
a rotating frame of reference which rotates with unit speed in the same direction
as Jupiter. In this system, the Sun and Jupiter are fixed points on the x-axis
corresponding to ψ = 0. We let (r, ϕ) = (r, ψ − t) denote the motion of the
asteroid in this rotating frame of reference. Our system has a Hamiltonian of the
form:

HPolar = H2BP (SA) +∆H(r, ϕ) :=
P 2
r

2
+
P 2
ϕ

2r2
− Pϕ −

1

r
+∆H(r, ϕ;µ)

where Pr and Pϕ are the momenta variables conjugate to r and ϕ respectively
(Arnol’d et al. 2006) and ∆H is the µ-small perturbation of the associated Sun-
Asteroid two body problem (2BP(SA)) by the presence of Jupiter. This system
arises by initially considering the planar 3BP where the asteroid has mass m, and
letting m → 0. From this, we have the following equations of motion to describe
the motion of our asteroid:

ϕ̇ =
∂HPolar
∂Pϕ

=
Pϕ
r2
− 1 Ṗϕ = −∂HPolar

∂ϕ
= −∂∆H

∂ϕ

ṙ =
∂HPolar
∂Pr

= Pr Ṗr = −∂HPolar
∂r

=
P 2
ϕ

r3
− 1

r2
− ∂∆H

∂r

In addition, the RCP3BP has a conserved quantity known as the Jacobi con-
stant.

J(r, ϕ, ṙ, ϕ̇) =
r2

2
+

µ

dJ
+

1− µ
dS

− ṙ2 + r2ϕ̇2

2
=: U(r, ϕ)− ṙ2 + r2ϕ̇2

2

where dJ and dS are distances from the asteroid to Jupiter and the Sun, respec-
tively.

dJ(r, ϕ) =
(
r2 − 2(1− µ)r cos(ϕ) + (1− µ)2

) 1
2

dS(r, ϕ) =
(
r2 + 2µr cos(ϕ) + µ2) 1

2

(1)

The Jacobi constant can be thought of as the total energy of our massless asteroid,
with respect to our rotating frame. For a derivation of this conserved quantity, re-
fer to sections 2.3.3 and 2.5.1 of the text by Arnol’d, Kozlov, and Neishtadt (2006).

Denote by
H(J0) = {(r, ϕ) : U ≥ J0}

a set of points on the plane of motion (configuration space). The connected com-
ponents of this set are called the Hill regions associated with the Jacobi constant
J0. These regions are the locations in the (r, ϕ) plane (shaded regions in figure 6)
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Fig. 1 Disjoint Hill Regions for µ = 10−3 and J0 ≥ 1.52 (Galante et at. 2011)

Fig. 2 Eccentricity vs. Aphelion and Perihelion Radii for J0 = 1.55

where the asteroid is allowed to move.

Fixing the Jacobi constant restricts dynamics to an invariant energy surface,
denoted

S(J0) := {(r, ϕ, ṙ, ϕ̇) : J(r, ϕ, ṙ, ϕ̇) = J0}

Most of these surfaces are smooth 3-dimensional manifolds. Let us denote by
RCP3BP (µ, J0) the RCP3BP with Sun-Jupiter mass ratio µ and dynamics re-
stricted to the surface S(J0).

For µ ≤ 10−3 and J0 ≥ 1.52, the set H(J0) consists of three disjoint con-
nected components: a region around the Sun called the inner Hill region, a region
around Jupiter called the lunar Hill region, and a noncompact region called the
outer Hill region. The boundary of these regions can be found by considering
the “zero velocity” curves, given by ṙ2 + r2ϕ̇2 = 0, which are on the boundary
of the Hill regions (Arnol’d et al. 2006). In this paper, we consider only orbits
contained in the inner Hill region, denoted by Hin(J0). For convenience, denote
Sin(J0) = Hin(J0)∩S(J0). When dynamics Sin(J0) is considered, we refer exclu-
sively to the case when the inner Hill region is disjoint from the other two.

For J0 greater than 1.52, asteroids stay uniformly bounded away from Jupiter
for all time by the energy surface constraint. However, for high eccentricities, the
asteroid can make near collisions with the Sun (referred to as sun-grazers; see fig-
ure 2). A general result states that there are KAM tori near the Sun which prevent
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collision (Chenciner et al. 1988).

For small µ and away from collisions, the RCP3BP is nearly integrable and
can be approximated with the Sun-Asteroid two body problem (2BP(SA)), cor-
responding to µ = 0. Elliptic motions of a 2BP have two special points where
the radial velocity ṙ of the asteroid is zero. The perihelion is the closest point to
the Sun1, denoted rperih, and the aphelion is the farthest point from the Sun,
denoted raph. We define the osculating (or instantaneous) eccentricity e(t) for the
RCP3BP to be the eccentricity of the asteroid in the unperturbed 2BP(SA) sys-
tem, with initial conditions taken to be those of asteroid in the RCP3BP at time t.

Theorem 1 Consider the restricted circular planar three body problem with Sun-
Jupiter mass ratio µ = 0.001. Fix a Jacobi Constant J0 = 1.55, so that there are
three disjoint Hill regions and consider dynamics in the inner Hill region. More-
over, assume that ∂ϕ(T )

∂Pϕ0
> 0 for all trajectories in a set Ωtwist ⊇ {e ∈ [0.09, 0.8]}

which start on the surface Σ = {ṙ = 0, r̈ ≥ 0, ϕ̇ > 0} and return to Σ after
time T . Then there exist constants e− and e+ where e− ≤ 0.2 and e+ ≥ 0.6, and
trajectories of an asteroid with initial eccentricity e− that increase to eccentricity
e+.

Remark: In section 2.1 we state that under these conditions, there exist orbits
that become Mars crossing.

We build a mathematical framework and obtain a sufficient condition for The-
orem 1 to hold. This condition guarantees applicability of so-called Aubry-Mather
theory. Then we run numerical tests and evaluate the region of applicability of this
theory in terms of eccentricity. Convincing numerical data shows for the Jacobi
constant J0 = 1.55 there existences of orbits whose eccentricity is varying from 0.2
to 0.6. For applicability of Aubry-Mather theory for the outer Hill region of the
RCP3BP, refer to the works of Galante and Kaloshin (2011). For a treatment of
diffusion in the Elliptic Restricted 3BP, refer to Liao and Saari (1998). In addition,
for a treatment of Mars crossing orbits for the elliptic case, refer to the works of
Wisdom (1982, 1983, 1985).

2 Numerical Aspects, Aubry-Mather Theory, and Regions of
Instability

Let us begin to describe the mathematical framework we employ by first noting
that a Jacobi energy surface is a 3-dimensional manifold. Fix µ ≤ 10−3 and Jacobi
constant J0 ≥ 1.52. The section Σ = {ṙ = 0, r̈ ≥ 0, ϕ̇ > 0} is a well-defined
Poincaré section in the inner Hill region. This leads to a well-defined (Poincaré)

1 To be precise, the perihelion is the point where the asteroid is at the closest point to the
center of mass of the system, and the Sun is within µ of the center of mass. However, in our
Solar System, the radius of the Sun is approximately 0.00089 the Sun-Jupiter distance, so we
allow this slight abuse in terminology for small µ.
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return map on an open set Ω. One can show that Ω is homeomorphic to a 2-
dimensional cylinder and can be parametrized by angle ϕ and conjugate momenta
Pϕ, or, alternatively, by ϕ and eccentricity e = e(Pϕ, J0)).

Suppose T 2 ⊂ Sin(J0) is an invariant set of the RCP3BP that is diffeomorphic
to a 2-dimensional torus. Call T 2 rotational if it cannot be continuously deformed
inside Sin(J0) into a closed curve or a single point. When µ = 0 (i.e., when there
is no perturbation), the problem reduces to the 2BP(SA) system and every such
rotational 2-torus is defined by {e = e0 ≥ 0}. Bounded motions correspond to
e0 ∈ [0, 1). In general, for e bounded away from 1 and µ sufficiently small, many
of these rotational 2-tori survive due to KAM (Siegel et al. 1971). Celletti and
Chierchia gave a computer assisted proof using µ ≈ 10−3 and J0 ≈ 1.76 in the
inner Hill region to show that near e = 0.3 there is a rotational 2-torus T 2 sepa-
rating Sin(J0) into a compact “Below T 2” component and a noncompact “Above
T 2” component (Celletti et al. 2007). We present a complementary method for
a specific value of J0 = 1.55; however, the method works for any µ ≤ 10−3 and
J0 ≥ 1.52.2

Define a Region of Instability (RI) as an open invariant set in Sin(J0) which is
homeomorphic to an annulus, and has no rotational 2-dimensional tori inside. If
there is a rotational 2-torus, then it separates Sin(J0) into “above” and “below”
regions. This provides a topological obstruction to instability. To construct regions
of instability, one must know about the existence of invariant curves in a given
region.

Theorem 2 In the setting of Theorem 1, the RCP3BP, restricted to the inner
Hill region of a Jacobi energy surface, has a well-defined Poincaré map F : Ω(⊂
Σ)→ Σ. Its restriction to Ωtwist is an exact area-preserving twist map, and there
is a subregion ΩAM ⊂ Ωtwist with [e−, e+]× T ⊂ ΩAM, such that for any rotation
number ω ∈ [ω−, ω+] (ω± = ω±(e±)) there exists a corresponding Aubry-Mather
set Σω ⊂ Ωtwist with Σω ∩ ΩAM 6= ∅. Moreover, none of the Aubry-Mather sets
Σω with ω ∈ [ω−, ω+] are ever invariant curves.

Abstractly, it is not clear that e− < e+ (or that ω− < ω+). We fix µ = 10−3

and J0 = 1.55 for the sake of working with concrete numbers. It is shown numeri-
cally for these parameters that on the subset T × {e ∈ [0.09, 0.8]} ⊂ Ωtwist ⊂ Ω,
the Poincaré map, denoted F = Fµ,J0

, is an exact, area-preserving twist (EAPT)
map. EAPT maps of this region can be studied using Aubry-Mather theory. How-
ever it is important to emphasize that Aubry-Mather (AM) theory does not apply
directly as Ω may not be an invariant set. Only through a refined study of prop-
erties of F can it be shown that AM theory can be applied. A brief review of AM
theory is found in section 6 for unfamiliar readers.

The cone crossing condition introduced by MacKay and Percival (1985) is used
to obtain a sufficient condition to rule out invariant curves, as well as establish
the existence of a range of Aubry-Mather invariant sets. In particular, it is used to

2 For J0 near or less than 1.52 collisions with Jupiter are hard to exclude.
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establish that there are e±, e− < e+ with T× [e−, e+] ⊂ ΩAM. It is the set ΩAM

that AM theory is ultimately applied to in order to obtain the existence of orbits
making large deviations in eccentricity. The cone crossing condition exploits the
fact that Aubry-Mather sets are Lipschitz graphs. The MacKay-Percival sufficient
condition is obtained in two steps:

– Establish bounds on the Lipschitz slope of potential invariant curves as well as
Aubry-Mather sets. This gives rise to a conefield in the tangent space to Ωtwist,
and a range of rotation numbers such that the corresponding Aubry-Mather
sets are contained in ΩAM.

– Show that there is a vertical strip of initial conditions such that there are
tangent vectors crossing this conefield. This rules out invariant curves in Ωtwist.

Once a region free of invariant curves is established inside the region of twist,
an application of Mather’s variational method provides the existence of an orbit
crossing ΩAM, completing the proof of Theorem 1 (Mather et al. 1994). It is im-
portant to emphasize that the orbits in Theorem 1 are not constructed by means of
numerical integration, but through abstract variational principles found in Aubry-
Mather theory. Convincing numerical data is presented to obtain concrete bounds.
To make the proof fully rigorous, our initial numerical tests must be verified, for
example by using the machinery of interval arithmetic.

2.1 Mars crossing orbits

On Sin(1.55), an asteroid with e = 0.2 has radius r ∈ [0.533, 0.800]. The semi-
major axis of the orbit of Mars is ≈ 1.5AU and the semi-major axis of the orbit of
Jupiter is ≈ 5.2AU which places Mars at position r = 0.288 in normalized coor-
dinates. Also on Sin(1.55), an asteroid with e = 0.6 has radius r ∈ [0.204, 0.818].
Thus we have the following:

Corollary 3 Under the hypothesis of Theorem 1, there exist orbits of the asteroid
which become Mars crossing.

In the Asteroid belt there are approximately 1.7 million asteroids of radius of at
least 1km. The orbits with J0 = 1.55 and e = 0.2 are at the boundary of the main
Asteroid belt. Some of them might have had significant oscillations of eccentricity
as this theorem suggests. Even though an asteroid whose orbit is Mars crossing
has a small chance of being captured by it (see section 2.6.2 of Arnol’d, Kozlov,
and Neishtadt (2006)), enough attempts could have led to a capture. However, we
stress that Mars is a not a part of our model, and, therefore, this claim cannot be
completely justified by the numerics in this paper. For larger eccentricity asteroids,
the perturbative effects of Mars become less negligible.

Letting Jupiter have positive eccentricity leads to the so-called Restricted Pla-
nar Elliptic Three Body Problem. This is a Hamiltonian system of two and a half
degrees of freedom. It has more room for instabilities. The well-known instabili-
ties occur in Kirkwood gaps, when the period of Jupiter and of an asteroid are
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given by a rational with both numerators and denominators small, e.g. 1/3, 2/5.
Mathematically, these instabilities have been recently studied by Fejoz, Guardia,
Kaloshin, and Roldan (2011). For a review of diffusion in asteroid belt resonances,
refer to the work of Ferraz-Mello (1999).

3 Plan of the Proof

The overall plan of our proof is as follows: we convert the dynamics to a return
map, eliminate the existence of invariant curves over a section of the return map,
and, finally, use existing theory to conclude that this non-existence of invariant
curves results in an orbit which diffuses over the interval [e−, e+]. These three
steps combined form the numerical proof of the main theorem. More explicitly,
the general flow of the remainder of the paper is as follows:

Step 1: The dynamics is formulated as that of an exact area preserving twist
map (EAPT) Fµ.

In the case µ = 0, it is easy to show that Fµ is a twist map. For µ > 0, numerics
are used to confirm this for a large region of the phase space.

Step 2: Approximate the EAPT Fµ by G.

The approximated map G shares the same qualitative behaviors as Fµ, has
some desired properties that Fµ lacks, and is much easier to deal with numeri-
cally. However, G is not guaranteed to be area preserving.

Step 3: Rule out the the presence of invariant curves for G.

We use the aforementioned cone crossing condition. By design, if this condition
holds for an area-preserving twist map Fµ in a region Ω, then Fµ has no rotational
invariant curves in Ω. This condition relies on a certain conefield.

We construct a conefield for the map G and verify that the cone crossing condi-
tion holds for G in a certain region Ω. Then we show that this condition is robust
and also holds for Fµ. This implies that Fµ has no rotational invariant curves in Ω.

Step 4: Apply the Mather Connecting Theorem

We utilize the Mather Connecting Theorem and Aubry-Mather theory to con-
clude there exists an orbit which diffuses in the manner we prescribed.

4 Formulation of a Twist Map

Recall that motions of the asteroid in rotating polar coordinates (r, ϕ) can be
viewed as the solutions to Hamilton’s equations of motion with a Hamiltonian of
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the form

HPolar = H2BP (SA) +∆H(r, ϕ) :=
P 2
r

2
+
P 2
ϕ

2r2
− Pϕ −

1

r
+∆H(r, ϕ;µ) (2)

With the notations in (1), ∆H can be written

∆H :=
1

r
− µ

dJ
− 1− µ

dS
=
µ(µ− 1)(1 + 3 cos(2ϕ))

4r3
+O(

µ

r4
)

Denote the flow of the RCP3BP at time t with initial conditions (r0, ϕ0, Pr0 , Pϕ0)
by ΦRCP3BP

t (r0, ϕ0, Pr0 , Pϕ0). Restricting the dynamics to the energy surface
Sin(J0) has the effect of implicitly defining one of the variables (r, ϕ, Pr, Pϕ) in
terms of the other three. Further reduction of the dynamics is possible. Consider
the section Σ = {ṙ = 0, r̈ ≥ 0, ϕ̇ > 0}, i.e., the perihelion surface, and take a
perihelion to perihelion return map. Denote this map by Fµ. Let T = T (ϕ0, Pϕ0)
be the return time to the section. Then Fµ(ϕ0, Pϕ0) = (ϕ1, Pϕ1) is given by

ϕ1 = ϕ0 +

∫ T

0

(
−1 +

Pϕ
r2

)
|Φt(ϕ0,Pϕ0

)dt

Pϕ1 = Pϕ0 +

∫ T

0

(
−∂∆H

∂ϕ

)
|Φt(ϕ0,Pϕ0

)dt

where the initial conditions r0 and Pr0 of the flow are determined implicitly by
the restriction to the energy surface Sin(J0) and the section Σ.

A computer can be programmed to compute this map numerically. We see the
output in figure 3 for J0 = 1.55. Notice the apparent lack of invariant curves for
e ∈ [0.2, 0.6].

4.1 Reformulation of Fµ

For the two body problem there is a natural, well defined action angle coordinate
system known as Delaunay variables, and for the RCP3BP, these coordinates are
well defined for motions away from e = 0, 1. In short, there is a canonical transfor-
mation D(`, g, L,G) = (r, ϕ, Pr, Pϕ) from Delaunay to polar variables. The image
of D is only defined for bounded motions of the 2BP(SA) with (`, g) ∈ T2 and
0 ≤ G ≤ L.

For the 2BP, L2 is the semi-major axis of the ellipse of the orbit, so by Kepler’s
Third Law, the period T = 2πL3. The variable G = Pϕ is the angular momentum,
or, alternatively, LG is the semi-minor axis of the ellipse of the orbit. The variable
` ∈ T is the mean anomaly, which is ` = π mod 2π at the aphelion, ` = 0 mod
2π at the perihelion, and, in general, (` − `0) = 2π

T t. The quantity g + t can be
interpreted as the perihelion angle (in non-rotating coordinates g itself plays this
role) (Goldstein et al. 2001).

It is possible to recover the r and ϕ variables from Delaunay coordinates by

noting that r = L2(1− e cos(u)), where the eccentricity e =
√

1− G2

L2 , and u, the
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Fig. 3 Return Map Fµ for J0 = 1.55 and µ = 0.001 (ϕ0 vs. eccentricity)
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eccentric anomaly, is given implicitly by the Kepler equation u− e sin(u) = `. The
variable ϕ = g + f , where the variable f , known as the true anomaly, is given by

tan
(
f
2

)
=
√

1+e
1−e tan

(
u
2

)
or, alternatively, r = L2(1−e2)

1+ecos(f) .

Because the return map Fµ is defined using trajectories corresponding to a
full revolution of the asteroid, the variable u is periodic with period 2π. When
u = 2πk, k ∈ Z, then f = 2πk. When µ = 0, there is no precession of the ellipse of
orbit, i.e. g + t is constant in rotating coordinates, and hence ϕ + t = ψ in non-
rotating coordinate is periodic. (This a restatement of the fact that the 2BP(SA)
has a periodic solution, an ellipse.) Due to the 2π periodicity of the equations of
motion in ϕ, ϕ1 simplifies to ϕ1 = ϕ0 + T (ϕ0, Pϕ0). In the 2BP(SA) case (µ = 0),
it holds that T (ϕ0, Pϕ0) = 2π(2J0 − 2Pϕ0)−3/2. Hence, it is possible to write in
general

Fµ :

(
ϕ0

Pϕ0

)
7→
(
ϕ1

Pϕ1

)
=

(
ϕ0 + 2π(2J0 − 2Pϕ0)−3/2 + µFϕ(ϕ0, Pϕ0 ;µ)

Pϕ0 + µFPϕ(ϕ0, Pϕ0 ;µ)

)
(3)

where Fϕ(.;µ), FPϕ(.;µ) are smooth functions in a domain bounded away from e =
1. We note that this map is similar in many ways to the ‘Keplerian’ map describing
highly eccentric cometary motion as described by Broucke and Petrovsky (1987).

4.2 Fµ is an EAPT

Because Fµ arises as a return map of a Hamiltonian system, the map is area
preserving. Additionally, due to the fact that the Hamiltonian has two degrees of
freedom, the map is also exact. We claim the map is also a twist map. (See section
6 for precise definitions of exact, area preserving, and twist for an abstract map.)

We say that Fµ is a twist map in a region Ω if

∂ϕ1

∂Pϕ0

> 0 ∀(ϕ0, Pϕ0) ∈ Ω

It is easy to see that this holds everywhere for µ = 0.

Lemma 4 The unperturbed map F0 is a twist map in the inner Hill Region for
J0 > 1.5.

Proof: ∂ϕ1

∂Pϕ0
= 6π(2J0−2Pϕ0)−5/2 > 0 since in the inner Hill region Pϕ0 < J0

when J0 > 1.5. ut

For µ 6= 0, careful estimates of the perturbation terms are needed to prove
twisting over a domain.3 Let Ωtwist be the largest domain in Ω where the inequal-
ity ∂ϕ1

∂Pϕ0
> 0 holds. In practice, we are only able to find a subdomain of Ωtwist

3 Notice that the angle ϕ enters into the perturbation ∆H (see (2)). As the Poincaré map Fµ
is defined for approximately one revolution of the asteroid, then the change in the ϕ component
should average out for higher order terms in the µ expansion of ∆H.
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which is selected experimentally to be the largest domain in which the twist in-
equality can be proven to hold using the current best estimates on the perturbation
terms. The twist property is expected to fail near e = 1 because of close encounters
with the Sun. The map Fµ is not even defined near this region because of this.
Current best estimates show the following:

Claim 5 For µ = 10−3 and J0 = 1.55, the map Fµ is a twist map in the inner
Hill Region for e ∈ [0.09, 0.8].

Numerical Proof: A computer is used to compute the map Fµ. The annulus
(ϕ, Pϕ) ∈ [0, 2π] × [0.39, 0.83] is divided up into boxes of size π

16 by 0.01. The
region e ∈ [0.09, 0.8] corresponds to Pϕ ∈ [0.39, 0.83], using conservation of the
Jacobi constant4. To compute the twist term, the partial derivative ∂ϕ1

∂Pϕ0
is esti-

mated using a difference quotient with initial conditions varying by 10−7 in the
Pϕ direction. The computer finds the required inequality holds in the specified
region at each grid point using this approximation. The dominant factor in the
computation of the partial derivatives for twist arises from the 2BP(SA) system
(see proof of Lemma 4). Because we are away from singularities at e = 1 (which
can cause near collisions with the sun), the approximation made is acceptable and
the behavior is close to that of the unperturbed system. ut

Remark: Currently this proof is verified using only numerics. To make this
numerical evidence into a proof, one can use rigorous numerical integration to
compute the partial derivative in question, and use interval arithmetic to make
a uniform bound for each box in the annulus. This has been carried out for a
few boxes in the grid using the CAPD package. Implementing rigorous numerical
integration for cases when the asteroid makes a close approach to the sun requires
extraordinarily good estimates on the perturbation term, meaning a high order
integrator with small step size, and a very fine grid is needed. This can be quite
costly in terms of computing power, and the authors were unable to show the
result for every box in the grid covering the given annulus.

5 The Cone Crossing Condition

First we consider an abstract setting and then apply it to the RCP3BP. This
section follows the work found in MacKay and Percival’s paper (1985). Suppose
F (θ0, I0) = (θ1, I1) is an EAPT on an invariant domain Ω diffeomorphic to a
cylinder T × R 3 (θ, I). A (rotational) invariant curve C ⊂ Ω (in this paper we
study only rotational invariant curves, so we omit “rotational” for brevity) is an
invariant set of F which is diffeomorphic to a circle and cannot be continuously
deformed to a single point in Ω. A theorem of Birkhoff states that invariant curves
are graphs over T.

4 More precisely, it follows from the geometry of ellipses that e =
√

1− G2

L2 in Delauney

coordinates; a quick conversion to polar coordinates yields the formula e =
√

1− 2J0P 2
ϕ + 2P 3

ϕ.
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Theorem 6 (Birkhoff) Suppose C is an invariant curve of an EAPT. Then there
exists a Lipschitz continuous function P such that C ⊂ {(θ, P (θ)) : θ ∈ T}.

Let D(x1, x2) = P (x2)−P (x1)
x2−x1

, x1 6= x2. Recall that P is Lipschitz if there exist

D± such that for all x1, x2, D− ≤ D(x1, x2) ≤ D+.

Obtaining the Lipschitz property in Birkhoff’s theorem is not hard. Simply
consider the first image of the vertical line segment of height dI. It can be shown

that the image of the line segment under F approximately has slope

(
∂I1
∂I0

)
(
∂θ1
∂I0

) . Tak-

ing sups over all such partial derivatives in Ω yields D+. Doing the same for F−1

yields D−. Recall, that each Aubry-Mather set is a Lipschitz graph (Mather et al.
1994). We obtain the following corollary.

Corollary 7 Each invariant curve in Ω, at every point, has a slope inside [D−, D+].
The same is true about the Lipschitz constant for each Aubry-Mather set contained
in Ω.

Consider tangent space orbits (F,DF ) : (x, v) 7→ (F (x), DxF (v)), where x =
(θ, I) ∈ T× R and v = (δθ, δI) ∈ T× R.

Theorem 8 (Cone Crossing Condition) Suppose {xi = F i(x0)} is an orbit
and {vi} is the tangent component to the orbit. Additionally suppose v0 is in the
upper half cone (i.e. above lines of slope D± originating at x0), and suppose there
exists an n > 0 so that vn is in the lower half cone (i.e. below the lines of slope
D± originating at xn). Then the orbit does not belong to an invariant curve.

Fig. 4 Cone Crossing Condition

Proof: By continuity in initial conditions, a nearby orbit would cross the
invariant curve. This is a contradiction (see fig. 4). ut

MacKay and Percival include exposition regarding the equivalence of the cone
crossing condition and action-minimizing orbits (MacKay et al. 1985). In short,
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orbits which satisfy the cone crossing condition are not action-minimizing. This
is because invariant curves are action-minimizing. See the associated paper for
additional comments on other types of action minimizing (Aubry-Mather) sets;
also see section 6.

5.1 Some preliminary numerics

In order to use the cone crossing condition in practice, tight bounds on the slopes
of the cones must be obtained. It is inefficient to use the uniform upper bound
on the entire phase space Ω, especially when the objects considered lay only in
a smaller subset. The following algorithm attempts to rule out invariant curves
by obtaining better bounds using more localized information about potentially
invariant objects.

1. Input an initial condition x0 = (θ0, I0) and a number of iterates n. In practice,
n is chosen so that θn − θ0 > 2π.

2. Compute a bound ∆I(x0, n) so that xi = F iµ(x0) ∈ T × [I0 −∆I(x0, n), I0 +
∆I(x0, n)] for i = 0, ..., n. The interval is often referred to as a localization
interval because it localizes the curve5.

3. Compute D± on the annulus T× [I0 −∆I(x0, n), I0 +∆I(x0, n)].
4. Use the cone crossing condition to rule out invariant curves on the annulus

T× [I0−∆I(x0, n), I0 +∆I(x0, n)] using n iterates. It suffices to use the vector
(1, D+) for initial conditions of the equations of variation and observe whether
images in the tangent space drop below the vector (1, D−).

One does not need to apply the cone crossing condition at every point in the
annulus to rule out invariant curves. It suffices to use a vertical strip in the I di-
rection going from the bottom to the top. If all points in the vertical strip satisfy
the cone crossing condition, then there are no invariant curves. (If there were, they
would have have to pass through the strip by construction of ∆I.) If not all points
in strip satisfy the cone crossing condition, the test to rule out invariant curves
is inconclusive. In this case, a higher number of iterates may be required to rule
out invariant curves, there may be point of a periodic orbit on the vertical slice,
or there may be an invariant curve in the domain.

The cone crossing condition only applies to invariant domains. While all the
points in the region Ωtwist by definition satisfy the twist property, this domain
might not be invariant. By first constructing bounded regions where potential in-
variant curves must lay, then using the cone-crossing condition to rule out the
possibility of existence invariant curves in those regions, this algorithm no longer
requires invariance of the domain of twist. Instead, only the weaker condition that
the localization interval remain inside in the domain of twist is required. Precise
numerical estimates are required for concrete problems to ensure this condition is
met. In practice this creates problems ruling out invariant curves in domains close
to the boundary of Ωtwist, however for a sufficiently large domain of twist, there

5 This construction actually localizes all Aubry-Mather sets with rotation sym-
bol ω ∈ [ 1

n+1
+, 1

n
−]. See section 6 for definitions.
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will be a sizable region where the presence of invariant curves can be ruled out.

Remarks on Application to the RCP3BP:

For J0 = 1.55, µ = 0.001, select T × [0.39, 0.83] ∈ (ϕ, Pϕ)6 to pick points
from. It follows from Claim 5 that Fµ is an EAPT in this domain. Step 2 of the
algorithm, the construction of the localization intervals, can be estimated simply
estimating the largest jump in the action component, Pϕ. From the equations of
motion for the RCP3BP map, this can be estimated by integrating upper bounds
on the perturbation term over one revolution. A priori estimates for this are not
hard to obtain and this step can be quick if one is willing to accept a larger lo-
calization interval. Step 3 can be implemented using interval arithmetic to bound
domains on a vertical strip. MacKay and Percival adopted this approach, though
for our purposes this is quite expensive. Step 4 requires bounds on the equations
of variation.

A computer is programmed to compute the map Fµ using µ = 0.001 and
J0 = 1.55. The space (ϕ, Pϕ) ∈ [0, 2π]× [0.57, 0.8] (corresponding to e ∈ [0.2, 0.6])
is divided up into boxes of size π

16 by 0.01.

To compute localization intervals, 10 iterates of the map are computed and
the difference from initial conditions is measured. In this region of the phase space
the size of the localization interval is no larger than 39µ. Using the localization in-
tervals, estimates of D± are computed using all points in the grid. Unfortunately,
the cone crossing condition is not usually satisfied using this technique. Better
estimates are needed. Using either a smaller grid or better estimates on both the
perturbation terms (section 7) and on the flow is a possible approach.

We pursue the method that MacKay and Percival suggested of refining esti-
mates on the bounds D± and combine it with approximations specific to our map
Fµ to obtain the cone crossing condition. Specifically, MacKay and Percival note
that the map DF induces a map on cones. Under repeated forward iterates of an
initial vertical vector, the images of the vectors decrease uniformly, converging to
an eigenvector of DF . Similarly for DF−1 (MacKay et al. 1985). This has the effect
of refining the cones. Armed with sufficiently good approximations, a computer is
able to estimate D± in each strip of size 0.01 in Pϕ and find that D+ ≤ 0.045.
Similarly, D− ≥ −0.045. This might suggest some type of symmetry with respect
to D+ and D−. However, we do not assume anything of the sort. Refining at each
point produces a measurable increase the bounds obtained for D± (4.5µ vs 39µ).
However this is still not sufficient to obtain a large region with no invariant curves.
Below we shall make explicit the approximations used to obtain the 4.5µ bound,
and provide an additional method of refinement which shall ultimately yield our
desired result.

6 From hereon out, results may be stated using the (ϕ, Pϕ) parameterization of annulus, as
opposed to (ϕ, e). The former parameterization is easier to work with numerically; the later is
better for intuition.
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Remark: This method has the advantage that it does not require us to com-
pute a fixed number of iterates n when running the algorithm to test for invariant
curves. Instead, we can run a test trajectory for as long as needed to determine if
the cone crossing condition is satisfied.

5.2 Some approximations

To compute the improved cones in the case of the RCP3BP, the map DF needs to
be precisely computed. This is rather complicated in the case of flows (MacKay and
Percival used the standard map which is cheap to compute). Let us make several
approximations to Fµ. First, in the definition of Fµ, assume that µFϕ(.;µ) ≡ 0.
This is reasonable, as changing ϕ1 by a µ small quantity over one revolution has
little effect, since the ϕ components enter into motions only in the ∆H term, which
is already µ small.

The effect of µFPϕ(.;µ) is significantly more important, as it dictates how diffu-
sion in eccentricity occurs. To compute this quantity exactly requires integration
of the equations of motion for the RCP3BP, which can be computationally ex-
pensive. Instead, we use the integrable 2BP(SA) to compute this term. With the
exception of high eccentricity sun grazing comets, starting from the same initial
conditions, flows for the RCP3BP and for the 2BP(SA) are quite similar (in fact
O(µ) close) over one revolution, so this is a reasonable approximation.

First note the following identities for the 2BP (which can be found on pg 67-68
of the text by Arnol’d, Kozlov, and Neishtadt (2006)):

u− e sin(u) = L−3t = ` r = L2(1− e cos(u)
)

sin(ϕ− ϕ0) =
sin(u)

√
1− e2

1− e cos(u)
cos(ϕ− ϕ0) =

cos(u)− e
1− e cos(u)

where ϕ0 is the angle the asteroid makes with respect to the x-axis (where Jupiter
is in the RCP3BP) when it is at the perihelion, i.e., when u = 0 mod 2π and
t = 0. Addition formulas for sine and cosine give that

sin(ϕ) =
sin(u)

√
1− e2

1− e cos(u)
cos(ϕ0) +

cos(u)− e
1− e cos(u)

sin(ϕ0)

cos(ϕ) =
cos(u)− e

1− e cos(u)
cos(ϕ0)− sin(u)

√
1− e2

1− e cos(u)
sin(ϕ0)

We make the estimate

µFPϕ(ϕ0, Pϕ0 ;µ) ≈ p(ϕ0, Pϕ0 ;µ) :=

∫ T

0

−∂∆H
∂ϕ

(
r(t), ϕ(t)

)
|2BP (SA)dt

=

∫ 2π

0

−∂∆H
∂ϕ

(
r(u), ϕ(u)

)(du
dt

)−1|2BP (SA)du.
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where ϕ0 is the perihelion angle and L2
0 = a is the semi-major axis, and where

the integration is performed over trajectories of the 2BP(SA). Note that for the

2BP(SA) it holds that
(
du
dt

)−1|2BP (SA) = Lr. Furthermore, due to the energy

surface constraint, L = (2J0 − 2Pϕ0)−
1
2 . Refer to section 8 for an evaluation of

the bounds on the error between µFPϕ(ϕ0, Pϕ0 ;µ) and p(ϕ0, Pϕ0 ;µ). In summary,
they are small enough for our purposes.

We introduce the map G defined by

G := G(µ, J0) :

(
ϕ0

Pϕ0

)
7→
(
ϕ0 + 2π(2J0 − 2Pϕ0)−3/2

Pϕ0 + p(ϕ0, Pϕ0 ;µ)

)
(4)

The map G captures many of the qualitative behaviors of Fµ. See figure 5. The
map G is clearly a twist map. However, G is not area-preserving.

Fig. 5 Approximate Return Map G for J0 = 1.55 (ϕ0 vs. eccentricity)

It follows that DFµ ≈ DG, where

DG =

(
1 6π(2J0 − 2Pϕ0)−5/2

∂p
∂ϕ0

1 + ∂p
∂Pϕ0

)



Instabilities in the Sun-Jupiter-Asteroid Three Body Problem 17

Notice that knowledge of derivatives of the function p(ϕ, Pϕ) are required to
compute this quantity.

∂p

∂Pϕ
:= −

∫ T (Pϕ)

0

((∂2∆H
∂r∂ϕ

)( ∂r
∂Pϕ

)
+
(∂2∆H
∂ϕ2

)( ∂ϕ
∂Pϕ

))
|2BP (SA)dt

− dT (Pϕ)

dPϕ

∂∆H

∂ϕ

(
r(T (Pϕ)), ϕ(T (Pϕ))

)
∂p

∂ϕ
:=

∫ T (Pϕ)

0

−
(∂2∆H
∂ϕ2

)
|2BP (SA)dt

As in the definition of p(ϕ, Pϕ) above, the integral can be expressed an integral
over t, or over u, by including the appropriate Jacobian, Lr, in this case. Since only

the 2BP approximation is considered, the period T = T (Pϕ) = π√
2
(J0 − Pϕ)−

3
2 .

The identities of section 4.1 imply the following:

∂T (Pϕ)

∂Pϕ
=

3π

2
√

2
(J0 − Pϕ)−

5
2

∂r

∂Pϕ
=
Pϕ(P 2

ϕ − r)
re2

∂ϕ

∂Pϕ
=
L sin(u)(P 2

ϕ + r)

r2e

For µ 6= 0, generically |det(DG)| 6= 1, and hence the map G is not area preserv-
ing. However ||p||C1 = O(µ), so the map G is µ-close to the area preserving map
Fµ. We employ the cone crossing condition on the map G and later offer evidence
that this is sufficient to draw conclusions about Fµ. Doing so requires approxima-
tions of the map G−1. Computing this map precisely can be quite expensive since
it typically requires shooting methods to obtain good numerics. To remedy this,
consider the following numerical inverse of G:

Ginv := Ginv(µ, J0) :

(
ϕ1

Pϕ1

)
7→
(
ϕ1 − 2π(2J0 − 2(Pϕ1 − p(ϕ∗0, Pϕ1 ;µ)))−3/2

Pϕ1 − p(ϕ∗0, Pϕ1 ;µ)

)
where ϕ∗0 is an approximation to ϕ0, given by ϕ∗0 = ϕ1 − 2π(2J0 − 2Pϕ1)−3/2.

On the region ϕ ∈ [0, 2π], Pϕ ∈ [0.57, 0.8], numerics indicate that as defined
||Ginv ◦ G(x) − x||C1 < 5µ. Hence, the numerical inverse is µ-close to the actual
inverse of the map G.

5.3 Refined Numerics - Conefields
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Definition: A conefield C(X) is a collection
(
x, v−(x), v+(x)

)
for each x ∈ X

where v±(x) ∈ TX are vectors in the tangent space with base point x.

In the present application, the vectors in the conefield are taken to the be
eigenvectors of Jacobian DF of the EAPT F at each point in the domain Ωtwist.
MacKay and Percival (1985) proposed to iteratively refine conefields to prove the
non-existence of invariant curves. The flow acts upon a conefield at a point through
the action of the Jacobian matrix DF on the eigenvectors. For the RCP3BP, define
the following refinements:

vnew+ (x) :=
(
DG
)
Ginv(x)

[
v+
(
Ginv(x)

)]
(5)

vnew− (x) :=
(
DG
)inv
G(x)

[
v−
(
G(x)

)]
(6)

Remark: Further refinements can be obtained by using higher iterates and
composition.

The refinements work by flowing the eigenvectors for the map DG forward and
backwards under the flow in the tangent space. This can be parlayed into an algo-
rithm to refine conefields over an entire space. MacKay and Percival note that if
at any point v− lays above7 v+, then the interior of the cone is empty and there
is no invariant curve through the phase space at that point. This can be parlayed
into the following algorithm.

1. Input n, m and divide the phase space (ϕ, Pϕ) ∈ T × R into blocks of size
1/n× 1/m.

2. In each block, compute bounds on the eigenvectors of DG and DGinv. Use
these eigenvectors to define the conefield for each point in the block.

3. Use refinements 5 and 6 to refine the conefields in each block, taking upper
and lower bounds where appropriate. If v− lays above v+, conclude there is no
invariant curve inside of the block. If v− lays below v+, take another refinement,
or alternatively, stop and leave the block as inconclusive.

A version of this algorithm is implemented. Specifically, a computer is pro-
grammed to compute the maps G, Ginv and their derivatives, using µ = 0.001 and
J0 = 1.55. The space (ϕ, Pϕ) ∈ [0, 2π]× [0.57, 0.8] (corresponding to e ∈ [0.2, 0.6])
is divided up into boxes of size π

16 by 0.01. The initial conefields are computed
using the eigenvectors. The refinement algorithm is applied to all points on the
grid. This provides strong numerical evidence of the following:

Claim: For J0 = 1.55, µ = 0.001, (ϕ, Pϕ) ∈ [0, 2π]× [0.57, 0.8] (corresponding
to e ∈ [0.2, 0.6]) the map Fµ has no invariant curves.

Numerical Proof: A computer is programmed to compute the maps G, Ginv,
and their derivatives, using µ = 0.001 and J0 = 1.55. The space (ϕ, Pϕ) ∈ [0, 2π]×
[0.57, 0.8] (corresponding to e ∈ [0.2, 0.6]) is divided up into boxes of size π

16

7 For v = (a, b), let v̄ = (1, b
a

) be a normalization of v. A vector v1 lays above v2 iff x ≥ y,
where v̄1 = (1, x) and v̄2 = (1, y).
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by 0.01. The initial conefields are computed using the eigenvectors for DG. The
refinement algorithm given above is used for all points on the grid. Each box in
the given domain requires only a finite number of iterates (an average of 15) to
satisfy the cone crossing condition. Since the map G is µ close to Fµ, then the
eigenvectors for DG are of order µ close to those of DFµ. For a modest number
of iterations, this difference appears to be negligible. Hence showing that the cone
crossing condition holds for points in the domain using G implies it holds for Fµ
as well. ut

Remark: While this provides strong numerical evidence that there are no in-
variant curves for Fµ in the domain e ∈ [0.2, 0.6], the above numerical proof is not
rigorous. To make it rigorous, upper and lower bounds for the cone fields and their
refinements must be given for each box, not just for a representative point in the
box. Interval arithmetic may be used to do this, as suggested by both Mackay and
Percival (1985) and Galante and Kaloshin (2011). Alternatively, one may dispense
with the map G entirely and compute everything using the map Fµ at the cost of
increased complexity in the interval arithmetic.

We have shown that Fµ cannot have invariant curves in the region correspond-
ing to e ∈ [0.2, 0.6]. This region is contained inside the twist region Ωtwist, however
Ωtwist is not invariant. It is not obvious that Aubry-Mather theory can be applied
to this entire non-invariant region. Abstractly, Aubry-Mather (AM) sets arise as
minimizers to a variational principle. To ensure their existence, it must be shown
that orbits do not stray far from the domain where the minimization is taking
place. One way to see this is the case for the RCP3BP is to recall that in section
5.1, localization intervals were constructed for Aubry-Mather sets. Numerical esti-
mates show that orbits with initial conditions inside of T×{e ∈ [0.2, 0.6]} remain
inside of T × {e ∈ [0.09, 0.8]} ⊂ Ωtwist after one full revolution around the sun.
Independent of these concrete estimates, there are theoretical bounds which arise
due to the action-minimizing properties of Aubry-Mather sets that keep the orbits
we are interested in from straying too far from AM sets. These issues, along with
a general review of Aubry-Mather theory is addressed in section 6. In summary, it
turns out that e ∈ [0.2, 0.6] is large enough for minimizers and connecting orbits
to exist and remain bounded inside the twist region.

6 Aubry-Mather Theory

A compact invariant region C is bounded by two rotationally invariant curves
C− and C+ such that there are no rotationally invariant curves in between C−
and C+ is called a Birkhoff Region of Instability (BRI). In such BRIs, Birkhoff
showed the existence of orbits coming arbitrarily close to C− and C+ (see the
work of Mather and Forni (1994)). A much stronger result is given by Mather
(1990), which allows one to specify neighborhoods of certain invariant sets which
the orbit must pass through. Before stating this result, a quick overview of basic
facts of Aubry-Mather theory shall be given. This review is primarily drawn from
the works of Bangert (1988), Mather and Forni (1994), Gole (2001), Moser (1986),
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Siburg (2004), Bourgain and Kaloshin (2005), and Xia.

Suppose F : T × R → T × R is a Cr (r ≥ 1) map. Let F̃ : R × R → R be the
lift of F to the universal cover. Let π denote the canonical projection of R onto T.
Call F an exact area preserving twist map (EAPT) if and only if

– F is area preserving: |det(dF )| = 1.
– F is exact: For any non-contractible curve γ, the oriented area between γ and

its image F (γ) is zero.
– F is twist: For F̃ = (F̃θ, F̃I) the sign of (∂I F̃θ) is constant and nonzero. This

implies that the image of a vertical line in the cylinder is tilted in one direction
relative to the vertical direction.

Consider the bi-infinite sequence {F̃ i(θ̃0, Ĩ0) = (θ̃i, Ĩi)}i∈Z of images. It turns
out that every EAPT can be described by a generating function h : R × R → R
(Bangert 1988). This can be described via the generating function by

Ĩk = −∂1h(θ̃k, θ̃k+1) Ĩk+1 = ∂2h(θ̃k, θ̃k+1)

The definition of h is extended to segments by

h(θ̃0, θ̃1, ...θ̃n) =

n−1∑
i=0

h(θ̃i, θ̃i+1)

Definition: A segment (θ̃0, θ̃1, ...θ̃n) is minimizing if for any other segment
(θ̃′0, θ̃

′
1, ...θ̃

′
n) with θ̃0 = θ̃′0 and θ̃n = θ̃′n, then

h(θ̃0, θ̃1, ...θ̃n) < h(θ̃′0, θ̃
′
1, ...θ̃

′
n)

See the work of Moser (1986) for the connection between the generating function
h and the Hamiltonian. It is essentially a discrete version of the action functional,
the integration of the Lagrangian dual to the Hamiltonian.

A sequence {θ̃i}i∈Z is minimal if every finite segment in the sequence is mini-
mal. Minimal sequences are action minimizing, in terms of Lagrangian formalism
(Mather et al. 1994). More specifically, the generating function h(θ̃0, θ̃1) gives the
minimal action to move between θ̃0 and θ̃1 in one iterate of F̃ . Notice that

∂2h(θ̃k−1, θ̃k) + ∂1h(θ̃k, θ̃k+1) = 0 for all k ∈ Z

is a discrete version of the Euler-Lagrange (EL) equations. Let S̃t(h) denote the
set of all orbits which satisfy the discrete (EL) equations. Call such orbits sta-

tionary orbits. Stationary orbits are extremizers. Let Σ̃(h) ⊂ S̃t(h) denote the

set of all action minimizing orbits. Note that Σ̃(h) ⊂ S̃t(h) . This implies that

π(Σ̃(h)) = Σ(h) ⊂ St(h) = π(S̃t(h)). Action minimizing orbits correspond to
orbits of F in the phase space (Bangert 1988, Mather et al. 1994, Xia).

For a stationary configuration Θ = {θ̃k} call the piecewise linear graph con-
necting (k, θ̃k) with (k + 1, θ̃k+1) for each k ∈ Z the Aubry graph. Suppose for a
stationary configuration Θ = {θ̃k}, the limit

ω = ω(Θ) = lim
k→∞

θ̃k
k
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exists. Call ω the rotation number of Θ. Geometrically ω is the average slope of
the Aubry graph of Θ.

Theorem 9 (Aubry, Mather) Every minimal configuration has a rotation num-
ber. Conversely, for every ω ∈ R there is a minimal configuration with rotation
number ω.

See the work of Bangert (1988) or Mather and Forni (1994) for a proof of this
fact. Note that this sheds some light onto why all Aubry-Mather sets are Lipschitz
graphs.

Let Σω = {Θ ∈ Σ(h)|ω(Θ) = ω} be the set of all minimal configurations of
rotation number ω. This set is called an Aubry-Mather set of rotation number ω.

Pick a rational rotation number ω = p
q . LetΣperp/q be the set of action minimizing

periodic points of period q and rotation number p/q. Two periodic points θ−

and θ+ are adjacent elements of Σperp/q if θ̃− and θ̃+ have no other elements of

Σ̃perp/q between them (refer to Bangert (1988) for illustrative pictures). For adjacent

periodic points θ− and θ+ in Σperp/q let

Σ+
p/q(θ

−, θ+) ={θ ∈ Σp/q : θ is backwards (resp. forwards) –asymptotic to θ− (resp. θ+)}

Σ−p/q(θ
−, θ+) ={θ ∈ Σp/q : θ is forwards (resp. backwards) –asymptotic to θ− (resp. θ+)}

Σ±p/q =
⋃

θ− adjacent to θ+ in Σper
p/q

Σ±p/q(θ
−, θ+)

These sets are the so called heteroclinic (or homoclinic in the case of a fixed point)
orbits of the periodic (resp. fixed) points.

Theorem 10 (Structure theorem: Rational case ω = p/q ∈ Q) The Aubry-
Mather set Σp/q is a disjoint union of Σperp/q , Σ+

p/q, and Σ−p/q. Moreover, Σperp/q is

always non-empty and if Σperp/q is not a curve, then Σ−p/q and Σ+
p/q are non-empty

as well.

In order to distinguish such invariant sets, follow Mather and Forni (1994) and
introduce rotation symbols ω∗. If Θ has an irrational rotation number ω, then its
rotation symbol is ω∗ = ω. In the rational case we have three options:

1. If Θ ∈ Σ−p/q, then its rotation symbol is p/q−.

2. If Θ ∈ Σperp/q , then its rotation symbol is p/q.

3. If Θ ∈ Σ+
p/q, then its rotation symbol is p/q+.

There is an ordering on the set of rotation symbols given by ω∗ < ω̄∗ if
and only if either underlying numbers satisfy ω < ω̄ or ω = ω̄ = p/q and
p/q− < p/q < p/q+. This induces a topology on the space of rotation symbols
(different from that on R) (Mather et al. 1994).
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It turns out that minimizers satisfy the following ordering condition:

Ordering condition: If Θ = {θ̃k} is a minimal configuration for rotation
symbol ω∗ ≤ p/q, then θ̃k+q ≤ θ̃k + p for all k ∈ Z.

Using a sophisticated variational problem with constraints, Mather (1990)
proved the following theorem about existence of connecting orbits:

Theorem 11 (Mather Connecting Theorem) Suppose ω1 < α1, α2 < ω2 and
suppose there are no rotationally invariant curves with rotation number ω ∈ (ω1, ω2)
in a BRI. Then there is a trajectory in the phase space whose α-limit set lies in
the Aubry-Mather set Σα1 and whose ω-limit sets lies in Σα2 . Moreover, for a
sequence of rotation numbers {αi}i∈Z, αi ∈ (ω1, ω2) and a sequence of positive
numbers {εi}, there exists an orbit in the phase space {pj} and an increasing bi-
infinite sequence of integers j(i) such that the dist(Σαi , pj(i)) < εi for all i ∈ Z.

Presently there are simplifications of this proof, as well as derivations using dif-
ferent methodology found in the work of Bernard (2008), Bourgain and Kaloshin
(2005), and Xia. It turns out that the hypothesis of a BRI in Mather Connecting
Theorem can be relaxed slightly without affecting the conclusion. This is pursued
in the work of Xia, §2,3. The approach is to use the so called ‘barrier functions’.
Let us discuss this now.

Let {θ̃k}±k≥0 be one-sided sequences. Call a one-sided sequence action min-
imizing (with respect to generating function h) if every finite segment is action
minimizing. There are analogous notations for one-sided rotation numbers, exis-
tence results for all one-sided rotation numbers, and structure theorems for one-
sided action minimizing orbits.

Consider a sequence Θaω = {θ̃ak}k∈Z where

– θ̃0 = a
– {θ̃k}k≥0 is a one-sided action minimizer with ω limit set in Σω.

– {θ̃k}k≤0 is a one-sided action minimizer with α limit set in Σω

Consider the following barrier function.

Pω(a) = lim
N→∞

( N∑
i=−N

h(θ̃ak , θ̃
a
k+1)− inf

{θ̃−N ...θ̃N |θ̃±N=θ̃a±N}

N∑
i=−N

h(θ̃k, θ̃k+1)

)

It is not hard to see that for any ω, Pω(a) ≥ 0 and Pω(a) = 0 if and only if
there is some Θ ∈ Σ̃ω such that θ̃0 = a. Moreover Pω(a) is Lipschitz continuous
with respect to a, and continuous with respect to ω (in the space of rotation sym-
bols) (Xia). It is possible to establish similar barrier functions for heteroclinic (and
homoclinic) orbits to periodic orbits. In this context, the barrier function allows
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one to detect the presence of an Aubry-Mather set.

A more constructive point of view is to think of barrier functions as the set up
a variational problem. The solution is a constrained minimizer (the minimizer is
constrained to pass through the point a). The motivates the following.

Consider two rotation numbers ω1, ω2 sufficiently close, an interval I, and the
sequence Θaω1,ω2

= {θ̃ak}k∈Z where

– θ̃0 = a ∈ I
– {θ̃k}k≥0 is a one-sided action minimizer with ω limit set in Σω2 .

– {θ̃k}k≤0 is a one-sided action minimizer with α limit set in Σω1

It is not hard to show such a sequence always exists. Consider the joint barrier
function

Pω1,ω2(a, I) = lim
N→∞

( N∑
i=−N

h(θ̃ak , θ̃
a
k+1)− inf

{θ̃−N ...θ̃N |θ̃±N=θ̃a±N ,θ̃0∈I}

N∑
i=−N

h(θ̃k, θ̃k+1)

)
.

Xia proves in §3 of his paper that

Proposition 12 (Xia, Prop 3.3) Using the above notation, let I ⊂ R be a closed
finite interval and suppose Pω1,ω2(b, I) > 0 where b ∈ ∂I. Then there exists a con-
strained minimizing trajectory Θ with θ̃0 ∈ I, with Θ forward asymptotic to a
trajectory in Σω2 , and with Θ backward asymptotic to a trajectory in Σω1 .

The idea of the proof is that while trajectories in the infimum are allowed to
vary over all of I, the boundary condition constrains the minimizer to lie on the
interior of the interval. The interval I is called a barrier for this reason. Notice
that this formulation does not require a BRI operate. It only requires that there
are one-sided trajectories which are asymptotic to Aubry Mather sets. The tails
of the constrained minimizer limit to Aubry-Mather (AM) sets because AM sets
are action minimizing and the cheapest behavior in terms of action is to follow
the AM sets. In the middle, the minimizer does not vary wildly because of the
constraint. Indeed, if there is a sequence Θ′ which wanders too far from a small
neighborhood of Σωi , i = 1, 2, then there is a cheaper trajectory which stays inside
that neighborhood. There is a very strong connection to geodesics here; one can
think of ‘cheapest’ as ‘shortest’ in some metric. See exposition in the works of
Bangert (1988), Moser (1986), and Siburg (2004).

The neighborhood where the constrained minimizer lives may be quite small.
For abstract systems, neither Xia, nor Mather give concrete bounds on the size;
instead is is postulated that the rotation numbers are sufficiently close. (For a
concrete system, estimation of the sizes of these neighborhoods can give some es-
timates on the speed of diffusion in the system). To produce general connecting
orbits between any two rotation numbers, both Mather and Xia construct joint
barrier functions whose constrained minimizers pass arbitrarily close to a sequence
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of Aubry-Mather sets, thus establishing the Mather Connecting Theorem. Heuris-
tically, one could think of the Aubry-Mather sets as the scaffolding upon which
connecting orbits in the theorem are built.

6.1 Application to the RCP3BP

Let us now apply Aubry-Mather theory, in particular the Mather Connecting The-
orem, to the RCP3BP. As mentioned, the region we consider for our analysis of
the RCP3BP is not invariant. However the formalism above provides the existence
of Aubry Mather sets inside a subset of the twist region, and allows us to con-
struct connecting orbits in small neighborhoods of the Aubry-Mather sets. The
connecting orbits won’t leak outside the twist region because, by the nature of
their construction, it is too expensive to do so.

Notice that the twist region Ωtwist defined in section 2 is not necessarily in-
variant; however, it is free of invariant curves. To use the Theorem 11 and the
formalism defined earlier in this section, namely that connecting orbits exist in
neighborhoods of AM sets, we must carefully define the neighborhoods used.

Define rotation numbers

ωmin = inf{ω : Σω ⊂ T× [0.2 ≤ e ≤ 0.6]}
ωmax = sup{ω : Σω ⊂ T× [0.2 ≤ e ≤ 0.6]}

to be the minimal and maximal rotation numbers, respectively, for Aubry-Mather
sets which are contained in the T× {e ∈ [0.2, 0.6]} ⊂ Ωtwist.

Lemma 13 There is a continuous function αω > 0 such that for all ω ∈ [ωmin, ωmax],
there is an αω–neighborhood of Σω contained in the twist region Ωtwist.

Proof: Estimates on change in angular momentum imply that making one
full revolution about the Sun does not change angular momentum by more than
39µ (see numerics in section 5). Looking at the boundary of T × {e ∈ [0.2, 0.6]}
(corresponding to [0.57 ≤ Pϕ ≤ 0.8]), we observe that the localization interval for
solutions with initial condition Pϕ = 0.57 is Pϕ ∈ [0.55, 0.58] and for solutions with
initial condition Pϕ = 0.8 is Pϕ ∈ [0.78, 0.81]. Both of these localization intervals
are contained in Pϕ ∈ [0.39, 0.83] ( or, equivalently, e ∈ [0.09, 0.8]). Hence starting
with initial eccentricity e0 ∈ [0.2, 0.6], the asteroid remains in the twist region
e ∈ [0.09, 0.8] after one revolution around the Sun. Therefore the Aubry-Mather
sets inside of e ∈ [0.09, 0.8] remain bounded safely inside the twist region. ut

Consider the collection of all such αω–neighborhoods. Let

ΩAM = α(ωmin, ωmax) :=
⋃

ω∈(ωmin,ωmax)

αω
(
Σω
)
.
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Fig. 6 Neighborhoods of Aubry Mather Sets on which connecting orbits are defined. (Galante
et al. 2011)

Claim: The connecting orbits found in the Mather Connecting Theorem be-
long to α(ωmin, ωmax).

Proof: By the previous lemma, α(ωmin, ωmax), and the Aubry-Mather (AM)
sets contained within, are localized inside of the twist region Ωtwist. The con-
necting orbits found in the Mather Connecting Theorem thread through small
neighborhoods of AM sets. AM sets are action minimizing and connecting orbits
are constrained minimizers. Moving too far from a neighborhood of an AM set is
cost prohibitive in terms of action. (See review of AM theory earlier in the sec-
tion). Since by construction α(ωmin, ωmax) is the collection all neighborhoods of
AM sets with rotation number between ωmin and ωmax, then connecting orbits
between these AM sets of these two rotation numbers live inside this neighbor-
hood, and hence the twist region as well. ut

Remark: This claim, plus the application of the cone-crossing condition to
the map Fµ, together form the proof for Theorem 2.

The lemma and subsequent claim allow us to consider dynamics only inside the
region T× {e ∈ [0.2, 0.6]} without having to worry about trajectories that would
leak outside the region where Fµ is a twist map. Essentially, trajectories which
would leak outside of the twist region are too expensive too be global minimizers
and are not of interest. Numerically, we have selected the region T×{e ∈ [0.2, 0.6]}
to be the largest such region where this is the case. Note that for different param-
eters µ, J0, the region where it is possible to prove diffusion occurs using our
method might be intractably small because of the problem of twist or the problem
of trajectories leaking out of the twist region. While diffusion results for nearby
parameters µ, J0 are expected to be quite similar, it would be interesting to see
for what parameters our approach breaks down.

Restricting to the set ΩAM, where diffusion is in principle possible, it remains
to setup the machinery of the Mather Connecting Theorem to deduce the existence
of connecting orbits. The following lemma does this, finally establishing Theorem
1 and giving justification for Corollary 3.
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Lemma 14 There exists a trajectory which is forward asymptotic to the Aubry-
Mather set Σωmin , backwards asymptotic to Σωmax , and which is contained inside
the neighborhood ΩAM.

Proof: By constructionΣωmin andΣωmax are contained insideΩAM = α(ωmin,
ωmax), which itself is contained inside the twist region. Furthermore, it is known
that Aubry-Mather sets are ordered by rotation symbol ω, with Σω and Σω′

close in the sense of Hausdorff distance for ω and ω′ close (Bangert 1988, Mather
et al. 1994). Smaller rotation numbers correspond to slower rotation around the
base T in the ϕ direction. But this is to say that smaller rotation numbers cor-
respond to higher eccentricities. By construction, ωmin (resp ωmax) is the small-
est (resp largest) rotation number for Aubry-Mather sets contained in the set
T× {e ∈ [0.2, 0.6]} (placing e− ≤ 0.2, e+ ≥ 0.6 in Theorem 1). Hence trajectories
which approach Aubry-Mather sets of these rotation numbers achieve eccentrici-
ties approaching e = 0.2 and e = 0.6. It is possible to select intermediate rotation
numbers between ωmin and ωmax sufficiently close and {εi} sufficiently small so as
to constrain minimizers to remain inside α(ωmin, ωmax). (Jumps in eccentricity e
are O(µ) over one revolution, so one method is to simply pick the εi and differences
in rotation numbers to be O(µ2) small.) Then by the Mather Connecting theorem,
there exists an orbit with the claimed properties. ut

One could visualize the Aubry-Mather sets as the remainders of tori after a
perturbation has been filled them with infinitely many small holes. To envision a
connecting orbit, first imagine unrolling the cylinder on the real plane. A connect-
ing orbit will be one which “climbs a set of stairs”, that is, increases in the holes of
the Aubry-Mather set, and then follows the remnants of a torus of higher rotation
number for a while. We note that although we have proven that there exists such
an orbit, that it is near quite difficult to compute such an orbit numerically.

7 Appendix: Estimates on Perturbation Terms

Recall that

∆H =
1

r
− 1− µ
dS(r, ϕ)

− µ

dJ(r, ϕ)

Good approximations may be obtained by Taylor expanding 1
r −

1−µ
dS(r,ϕ)

in 1
r and

Taylor expanding − µ
dJ(r,ϕ)

in r about 0. Using only 4 terms in each series, it is not

hard to show that for r ∈ [0.1, 0.9], we have |∆H −∆H+| < 5µ. In fact, further
away from r = µ and r = 1 − µ, the difference is much smaller, closer to µ2. For
the purposes of refined numerics, very good upper bounds are required. Consider

max
ϕ
|∆H(r, ϕ;µ)| ≤ (|∆H|)+(r) max

ϕ
|∂ϕ∆H(r, ϕ;µ)| ≤ (|∂∆H

∂ϕ
|)+(r)

max
ϕ
|∂r∆H(r, ϕ;µ)| ≤ (|∂∆H

∂r
|)+(r) max

ϕ
|∂2rϕ∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂r∂ϕ
|)+

max
ϕ
|∂2ϕϕ∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂ϕ2
|)+ max

ϕ
|∂2rr∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂r2
|)+
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where

(|∆H|)+(r) :=
µ(1− µ)

r(r − 1 + µ)(r + µ)

(|
∂∆H

∂ϕ
|)+(r) :=

µ(1− µ)r
(
1 + 3r(r − 1) + µ(6r − 3) + 3µ2

)
(r − 1 + µ)3(r + µ)3

(|
∂∆H

∂r
|)+(r) := −

1

r2
+

µ

(r − 1 + µ)2
+

1− µ
(r + µ)2

(|
∂2∆H

∂r∂ϕ
|)+ := µ(1− µ)

(
3(1− µ)

(r − 1 + µ)4
+

2

(r − 1 + µ)3
+

3µ

(µ+ r)4
−

2

(µ+ r)3

)
(|
∂2∆H

∂ϕ2
|)+ := 3µ(1− µ)

(
(1− µ)3

(r − 1 + µ)5
+

µ3

(µ+ r)5

)
(|
∂2∆H

∂r2
|)+ := −

2

r3
+

2µ

(r − 1 + µ)3
+

2(1− µ)

(µ+ r)3

Remark: All of these estimates are independent of the Jacobi constant.

In the paper by Galante and Kaloshin (2011), even more explicit bounds are
found for the outer region, where it suffices to expand ∆H and its derivatives
entirely in terms of 1

r .

8 Appendix: Difference between 2BP and RCP3BP integration for
computation of Fµ

This appendix investigates the differences which arise from integrating over a
trajectory of the 2BP(SA) vs. a trajectory of the RCP3BP in the definition of p.
Suppose a flow for the RCP3BP and the 2BP(SA) start with the same initial condi-
tions. Let r3BP (t), ϕ3BP (t) denote the radius and angle which arise by integration
of the RCP3BP and let r2BP (t), ϕ2BP (t) denote the radius and angle which arise
by integration of the 2BP(SA). Call the corresponding periods T2BP = T2BP (Pϕ)
and T3BP = T3BP (ϕ, Pϕ). Then

∂∆H

∂ϕ
(r3BP , ϕ3BP ) =

∂∆H

∂ϕ
(r2BP + (r3BP − r2BP ), ϕ2BP + (ϕ3BP − ϕ2BP ))

=
∂∆H

∂ϕ
(r2BP , ϕ2BP ) +

∂2∆H

∂r∂ϕ
(r̃, ϕ3BP )(r3BP − r2BP )

+
∂2∆H

∂ϕ2
(r3BP , ϕ̃)(ϕ3BP − ϕ2BP )

where r̃ ∈ [r2BP , r3BP ] and ϕ̃ ∈ [ϕ2BP , ϕ3BP ].

This can be intervalized8 as follows. LetR = [r2BP , r3BP ] and Φ = [ϕ2BP , ϕ3BP ].
The error which arises from using the 2BP(SA) vs the RCP3BP is contained in
the interval

8 For an introduction to interval arithmetic, refer to the paper by Wilczak and Zgliczynski
(2007).
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E := (|∂
2∆H

∂r∂ϕ
|)+(R,Φ) ·R+ (|∂

2∆H

∂ϕ2
|)+(R,Φ) · Φ,

i.e.

∂∆H

∂ϕ
(r3BP , ϕ3BP ) ∈ ∂∆H

∂ϕ
(r2BP , ϕ2BP ) + E.

E can be used to estimate the difference between p(ϕ0, Pϕ0 ;µ) and Pϕ(t) −
Pϕ(0) (or, equivalently, FPϕ(ϕ0, Pϕ0 ;µ)) over a revolution.

∫ T3BP

0

−
(∂∆H
∂ϕ

)
|RCP3BP dt =

∫ T2BP

0

−
(∂∆H
∂ϕ

)
|RCP3BP dt

+

∫ T3BP

T2BP

−
(∂∆H
∂ϕ

)
|RCP3BP dt

∈
∫ T2BP

0

−
(∂∆H
∂ϕ

)
|2BP (SA)dt+ T2BP · E

+ (T2BP − T3BP )(|∂∆H
∂ϕ
|)+(R)

This implies

|p(ϕ0, Pϕ0 ;µ)− FPϕ(ϕ0, Pϕ0 ;µ)| ≤ |T2BP · E + (T2BP − T3BP )(|∂∆H
∂ϕ
|)+(R)|.

A package with support for interval arithmetic can be used to compute this
interval.

Consider a variational equation of the form δi+1 = DG[δi], where δ is a two
dimensional vector of the variation in each variable. From the approximating as-
sumptions in section 5.2, and the interval enclosure above, the initial variation
from ϕ is negligible, and the variation from Pϕ is bounded by |T2BP ·E+(T2BP −
T3BP )(|∂∆H∂ϕ |)

+(R)|. This gives a bound of the overall difference between using G
and Fµ, per iteration.

9 Appendix: Software Used For Numerics

The numerics found in this paper are of two distinct varieties: rigorous numer-
ics involving interval arithmetic, and nonrigorous numerics making use of floating
point arithmetic. Whenever possible, interval arithmetic is used to obtain results.
Interval arithmetic has the advantage of being validated. The computer actually
proves the result. This is why pains were taken in section 8 to set up statements in
terms of interval enclosures. Mathematica supports interval arithmetic, as does the
popular CAPD package for rigorous numerical integration. Unfortunately interval
arithmetic can be very time consuming (the results in Galante and Kaloshin’s
paper (2011) took hundreds of days of computer time), so the authors needed to
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resort to nonrigorous floating point arithmetic. When used, precision is lost and
results can only be stated in terms of big−O notation in some cases, which is why
many things are stated being O(µ) close. Mathematica was used to produce such
results because it was relatively quick to implement routines to check the claims
made. The instances of floating point arithmetic where a finite term of size O(µ)
is bounded or evaluated are generally believed to be very accurate since the errors
the computer makes are of order 10−16, compared to 10−3.

The instances of floating point arithmetic involving numerical integration over
short periods of time (on average, 15 revolutions) are believed to be accurate, as
they arose from instructing Mathematica to use step sizes of approximately 10−16.
Mathematica internally uses an adaptive Runge-Kutta integrator. General theory
says the error for short time periods of integration will be O(10−15). Exactly
what constitutes a “short time period” in a chaotic system is highly dependent
on the system and it has been shown that nonrigorous RK integrators fail to ac-
curately model chaotic flows for longer periods of time. This spurred the creation
of rigorous numerical integrators such as the CAPD described by Wilczak and
Zgliczynski (2007). The paper is setup so that when sufficient computing power
becomes available, the dedicated reader may convert the floating point results to
interval arithmetic results and fully validate all the claims presented.

The code used for the computations involved in this paper, can be found online
on the webpage http://www.personal.psu.edu/jcu5018/, under the publications
tab. The Mathematica notebook involved with this paper is entitled instabili-
ties in the asteroid belt.nb. In addition to this notebook, there is a larger note-
book, entitled RCP3BP estimates 4v4.nb, created by the authors, which contains
a collection of various functions for the RCP3BP in both rotating polar and Delau-
nay coordinates. The functions in this notebook are required to effectively run the
associated code for this paper. The notebook instabilities in the asteroid belt.nb
contains notes within it to help understand what is occuring at each step. Below,
we will give a detailed analysis of the numerical aspect of the paper. The main
functions of the notebook are as follows:

– define the return map Fµ
– verify twist in the region e ∈ [0.09, 0.8] for Fµ
– define the approximation function p(ϕ0, Pϕ0 ;µ)
– define both the approximation map G, and its approximate numerical inverse
Ginv

– verify that the approximate numerical inverse Ginv is an acceptable inverse
– obtain bounds on D± for each grid point of T× [0.39, 0.83] ∈ (ϕ, Pϕ)
– implement MacKay and Percival’s cone crossing condition on G
– output an array, verifying that the cone crossing conditon holds for each grid

point of T× [0.39, 0.83] ∈ (ϕ, Pϕ)

We detail the numerical technique used for each of these steps.

The return map is defined, through a semi-iterative procedure. We begin by
defining a function ReturnT ime, that finds the time it takes to make k orbits from
perihelion to perihelion. This is done by using the 2BP period T = 2πL3 as an
initial guess, and searching for the closest solution of Pr = 0 to our initial guess us-
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ing root finding (Mathematica internally implements some variant of the Newton’s
method for this). Through experimentation, we find that for larger values of k,
the initial guess loses accuracy (the original 2BP estimate of the period no longer
holds), and may result in a return time to an apohelion (also on Pr = 0). The
guesses have been numerically tested to accurately give perihelion to perihelion
return times for pieces of orbit 3 revolutions long. For this reason, the return map
is defined to run iteratively, using jumps of k = 3, where the initial guesses for
the return times are reset using end coordinates, after which the map is stepped
in single iterates to reach the desired return map iteration.

To verify twist in a region it suffices to compute dT
dPϕ0

> 0.

Claim: dT
dPϕ0

> 0 in a given region implies that region is twisting.

Proof: The chain rule implies that dϕ1

dPϕ0
= dϕ1

dT
dT
dPϕ0

. To see that dϕ1

dT > 0,

recall the integral equation ϕ1 = ϕ0 +
∫ T
0

(
−1 +

Pϕ
r2

)
|Φt(ϕ0,Pϕ0

)dt and note that

ϕ̇ = −1 +
Pϕ
r2 > 0. ut

To show twist in the region Pϕ ∈ [0.39, 0.83] (or e ∈ [0.09, 0.8]), a grid of solu-
tions of size π

16 by 0.01 is generated. At each grid point (ϕ, Pϕ), ReturnT ime at

(ϕ, Pϕ) and (ϕ, Pϕ + 10−7) is computed. It turns out ReturnT ime(ϕ,Pϕ+10−7) −
ReturnT ime(ϕ,Pϕ) > 0 for all (ϕ, Pϕ) in this region. In fact, we find the minimum
value of ReturnT ime(ϕ,Pϕ+10−7)−ReturnT ime(ϕ,Pϕ) on this grid to be 1.95. Us-

ing a difference quotient with difference 10−7 in the Pϕ direction to approximate
dT
dPϕ0

provides strong evidence for dT
dPϕ0

> 0, and thus for twist. To rigorously

prove twist would require replacing the evaluations at grid points with bounds on
intervals, and replacing the difference quotient with the equations of variation.

We move on to the approximating function p. The definition of the function
p(ϕ0, Pϕ0 ;µ) is straightforward. Recall, from section 5.2, that

p(ϕ0, Pϕ0 ;µ) =

∫ 2π

0

−∂∆H
∂ϕ

(
r(u), ϕ(u)

)(du
dt

)−1|2BP (SA)du.

p(ϕ0, Pϕ0 ;µ) is computed by numerical integration. ∂p∂ϕ and ∂p
∂Pϕ

are computed in

a similar fashion (refer to section 5.2 for their definitions). The derivatives ∂p
∂ϕ and

∂p
∂Pϕ

become of use when calculating DG and (DG)inv.

Defining the approximation map G and the approximate numerical inverse map
Ginv is a matter of numerically implementing the map definition found in section
5.2. To verify that Ginv is an appropriate numerical inverse, we take a grid of
size π

16 by 0.01 for T × [0.39, 0.83]. At each grid point, the map Ginv ◦ G is com-

puted. Comparing the original point x = (ϕ0, Pϕ0), and the result Ginv ◦ G(x)
componentwise at each grid point, we find the largest difference to be 3.18×10−3.
From this, one can infer that ||Ginv ◦ G(x)− x||C1 < 5µ for the region ϕ ∈ [0, 2π],
Pϕ ∈ [0.57, 0.8] and accept Ginv as an acceptable numerical inverse.
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The cone values D± are calculated at each grid point (ϕ0, Pϕ0) by computing
the eigenvectors of DG and DGinv, respectively, and taking the cone value at
each point to be the largest magnitude eigenvector in the localization interval
of Pϕ0 . When it comes to the actual cone crossing condition, the algorithm is
straightforward. For each grid point x±,0 = (ϕ0, Pϕ0), we take the initial condition
v±,0 to be (1, δPϕ0) and apply the following iteration at each step:

x+ = G(x+) v+ = DG(x−)v+

x− = Ginv(x−) v− = DGinv(x+)v−

This follows from (7.1) and (7.2) of MacKay and Percival’s paper (1985). At each
iteration, check if v− > v+ (meaning that, when normalized, for v+,N = (1, y) and
v−,N = (1, z), it holds that z > y). If this occurs at a given iteration, we record
the step, terminate the loop, and can conclude that the cone-crossing condition
has been satisfied at that grid point. An array is constructed detailing the number
for which this occurs at each grid point. On average, this requires approximately
15 steps for the cone crossing condition to be satisfied. In some very rare cases,
a grid point may require over 100 iterations. Taking too many iterates at a grid
point relies on the computer’s ability to perform long term numerical integration.

Although we satisfy the cone crossing condition over the entire grid in our
region, in practice, all that is required is to satisfy the condition for the bound-
ary P−ϕ = P−ϕ (e−), P+

ϕ = P+
ϕ (e+) of our region, and an arbitrary vertical slice

[P−ϕ , P
+
ϕ ]×{∆ϕ} ⊂ Ω. As discussed by MacKay and Percival (1985), to prove the

non-existence of rotational invariant curves, it suffices to consider a vertical slice.
The main difference is that in their paper, they are examining their entire map
(the standard map), whereas we are considering a subset of ours. For this reason,
we must satisfy the cone-crossing condition at the boundary P−ϕ = P−ϕ (e−) and
P+
ϕ = P+

ϕ (e+). This gives us a certain leeway regarding the high number of iterates
required for a select number of grid points. Based on the numerical results given
by our notebook, we have given strong numerical evidence for the non-existence
of invariant curves for e ∈ [0.2, 0.6].
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